Wurzelkriterium

Wurzelkriterium
Wurzelkriterium,
 
ein Konvergenzkriterium für Reihen mit komplexen Gliedern: die Reihe
 
konvergiert absolut, falls k ∈ ℕ und q ∈ ℝ mit 0 < q < 1 existieren, sodass für alle nk die Beziehungq gilt. In diesem Fall ist die geometrische Reihe eine konvergente Majorante von
 
Eine äquivalente Formulierung dieser Konvergenzbedingung ist
 
Existiert k ∈ ℕ, sodass für alle nk, so divergiert die Reihe. Das Wurzelkriterium ist hinreichend für die absolute Konvergenz einer Reihe, aber nicht notwendig, wie z. B. die konvergente Reihe zeigt.

Universal-Lexikon. 2012.

Игры ⚽ Нужен реферат?

Schlagen Sie auch in anderen Wörterbüchern nach:

  • Wurzelkriterium — Das Wurzelkriterium ist ein mathematisches Konvergenzkriterium, also ein Mittel zur Entscheidung, ob eine unendliche Reihe konvergent ist. Inhaltsverzeichnis 1 Formulierungen 2 Beweisskizze 3 Restgliedabschätzung …   Deutsch Wikipedia

  • Wurzel-Kriterium — Das Wurzelkriterium ist ein mathematisches Konvergenzkriterium, also ein Mittel zur Entscheidung, ob eine unendliche Reihe konvergent oder divergent ist. Inhaltsverzeichnis 1 Formulierungen 2 Beweisskizze 3 Restgliedabschätzun …   Deutsch Wikipedia

  • Formel von Cauchy-Hadamard — Als Konvergenzradius einer Potenzreihe der Form ist die größte Zahl r definiert, für welche die Potenzreihe für alle x mit | x − x0 | < r konvergiert. Falls sie auf der ganzen komplexen Zahlenebene konvergiert, sagt man, der Konvergenzradius… …   Deutsch Wikipedia

  • Konvergenzkriterien — In der Analysis ist ein Konvergenzkriterium ein Kriterium, mit dem die Konvergenz einer unendlichen Reihe bewiesen werden kann. Insbesondere sind damit Kriterien für die Konvergenz einer reellen Reihe gemeint. Mit einigen dieser Kriterien kann… …   Deutsch Wikipedia

  • Konvergenzradius — Als Konvergenzradius einer Potenzreihe der Form ist die größte Zahl r definiert, für welche die Potenzreihe für alle x mit | x − x0 | < r konvergiert: Dabei kennzeichnet sup das Supremum der Menge. Falls die Potenzreihe auf der ganzen… …   Deutsch Wikipedia

  • Trivialkriterium — In der Analysis ist ein Konvergenzkriterium ein Kriterium, mit dem die Konvergenz einer unendlichen Reihe bewiesen werden kann. Insbesondere sind damit Kriterien für die Konvergenz einer reellen Reihe gemeint. Mit einigen dieser Kriterien kann… …   Deutsch Wikipedia

  • Augustin Louis Cauchy — [ogysˈtɛ̃ lwi koˈʃi] (* 21. August 1789 in Paris; † 23. Mai 1857 in Sceaux) war ein französischer Ma …   Deutsch Wikipedia

  • Divergente Folge — Eine Folge kann in der Mathematik die Eigenschaft haben, sich mit wachsendem Index immer mehr einer bestimmten Zahl anzunähern. Diese Zahl nennt man Grenzwert oder Limes der Folge. Besitzt eine Folge solch einen Grenzwert, so wird sie konvergent …   Deutsch Wikipedia

  • Endliche Reihe — In der Mathematik ist eine (unendliche) Reihe eine Folge, deren Glieder (Partialsummen) als Summen der ersten n Glieder einer anderen Folge gegeben sind. Inhaltsverzeichnis 1 Nomenklatur 2 Beispiele 3 Konvergenzkriterien 3.1 Beispiele …   Deutsch Wikipedia

  • Grenzwertkriterium — Eine Folge kann in der Mathematik die Eigenschaft haben, sich mit wachsendem Index immer mehr einer bestimmten Zahl anzunähern. Diese Zahl nennt man Grenzwert oder Limes der Folge. Besitzt eine Folge solch einen Grenzwert, so wird sie konvergent …   Deutsch Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”